FINDING THE MISSING LENGTH OF A RIGHT TRIANGLE

If the lengths of two sides of a right triangle are given, we can use Pythagorean Theorem to find the length of the missing side.

Pythagorean Theorem : 

Square of the hypotenuse of a right triangle is equal to sum of the squares of other two sides.

a2 = b2 + c2

If you know the values of any two variables, you can solve for the third variable using the above equation.

Note :

Hypotenuse is the longest side of a right triangle and it is always opposite to the right angle.

Example 1 :

In the right triangle shown below, find the value of 'a'.

Solution :

In the right triangle above, by Pythagorean Theorem,

152  =  52 + a2

225  =  25 + a2

Subtract 25 from both sides.

200 = a2

Take square root on both sides.

√200 = √a2

√(2 x 10 x 10) = a

10√2 = a

Example 2 :

In the right triangle shown below, find the value of 'c'.

Solution :

In the right triangle above, by Pythagorean Theorem,

c= 72 + 92

c= 49 + 81

c= 130

Take square root on both sides.

c2√130

c = √130

Example 3 :

In the right triangle shown below, find the value of 'c'.

Solution :

In the right triangle above, by Pythagorean Theorem,

c= 282 + 452

c= 784 + 2025

c= 2809

Take square root on both sides.

c = √2809

c = 53

Example 4 :

In the right triangle shown below, find the value of 'b'.

Solution :

In the right triangle above, by Pythagorean Theorem,

14= 52 + b2

196 = 25 + b2

Subtract 25 from both sides.

171 = b2

171 = b2

171 = b

Example 5 :

In the right triangle shown below, find the value of 'a'.

Solution :

In the right triangle above, by Pythagorean Theorem,

180= a2 + 1752

32400 = a2 + 30625

Subtract 30625 from both sides.

1775 = a2

1775 = a2

√(5 x 5 x 71) = a

5√71 = a

Example 6 :

In the right triangle shown below, find the value of 'b'.

Solution :

In the right triangle above, by Pythagorean Theorem,

101= b2 + 992

10201 = b2 + 9801

Subtract 9801 from both sides.

400 = b2

√400 = √b2

20 = b

Example 7 :

Let a, b and c be the lengths of the sides of a right triangle. If a = 16, b = 63 and c is the length of hypotenuse, then find the value of c.

Solution :

By Pythagorean Theorem,

c= a2 + b2

Substitute a = 16 and b = 63.

c= 162 + 632

c= 256 + 3969

c= 4225

Take square root on both sides.

c2√4225

c = 65

Example 8 :

Let a, b and c be the lengths of the sides of a right triangle. If a = 16, c = 34 and c is the length of hypotenuse, then find the value of b.

Solution :

By Pythagorean Theorem,

c= a2 + b2

Substitute a = 16 and c = 34.

34= 162 + b2

1156 = 256 + b2

Subtract 256 from both sides.

900 = b2

Take square root on both sides.

900 = b2

30 = b

Example 9 :

Let a, b and c be the lengths of the sides of a right triangle. If b = 112, c = 3 and a is the length of hypotenuse, then find the value of a.

Solution :

By Pythagorean Theorem,

a= b2 + c2

Substitute b = √112 and c = 3.

a= (√112)2 + 32

a= 112 + 9

a= 121

Take square root on both sides.

√a2 = √121

a = 11

Example 10 :

Let a, b and c be the lengths of the sides of a right triangle. If a = 7y, c = 3y and a is the length of hypotenuse, then find the value of b in terms of y.

Solution :

a= b2 + c2

(7y)= b2 + (3y)2

49y2 = b2 + 9y2

Subtract 9y2 from both sides.

40y2 = a2

Take square root on both sides.

√(40y2) = √a2

2y√10 = a

Example 11 :

The bottom of a ladder must be placed 3 feet from a wall. The ladder is 12 feet long.  How far above the ground does the ladder touch the wall? 

Solution :

pythagorean-theorem-wp-q1

Let x be the distance from ground to tip of the wall it touches.

Using Pythagorean theorem,

122 = 32 + x2

144 = 9 + x2

x2 = 144 - 9

x2 = 135

x = √135

x = √(5 x 3 x 3 x 3)

= 3√15 ft

Example 12 :

An isosceles triangle has congruent sides of 20 cm.  The base is 10 cm.  What is the area of the triangle? 

pythagorean-theorem-wp-q2.png

Solution :

Half of the base = 5 cm, side length = 20 cm

Let x be the height of the triangle.

202 = 52 + x2

400 = 25 + x2

x2 = 400 - 25

x2 = 375

x = √375

x = √(5 x 5 x 5 x 3)

= 5√15 cm

Example 13 :

The area of a square is 81 cm2.  Find the length of diagonal.

Solution :

pythagorean-theorem-wp-q3.png

Let x be the side length of square.

Area of square = 81

a2 = 81

a2 = 92

a = 9

Let d be the length of diagonal. Then,

d2 = a2 + a2

d2 = 92 + 92

= 81 + 81

= 162

d = √162

d = √(2 x 9 x 9)

d = 9√2

So, the length of the diagonal is 9√2 cm.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 199)

    Jul 02, 25 07:06 AM

    digitalsatmath268.png
    Digital SAT Math Problems and Solutions (Part - 199)

    Read More

  2. Logarithm Questions and Answers Class 11

    Jul 01, 25 10:27 AM

    Logarithm Questions and Answers Class 11

    Read More

  3. Digital SAT Math Problems and Solutions (Part -198)

    Jul 01, 25 07:31 AM

    digitalsatmath267.png
    Digital SAT Math Problems and Solutions (Part -198)

    Read More