HOW TO FIND EXPANSION USING BINOMIAL THEOREM

Binomial expansion for (x + a)n is,

nc0xna+ nc1xn-1a+ nc2xn-2a+ .........+ ncnxn-na0

Question 1 :

Expand (i) [2x2 − (3/x)]3

Solution :

x  =  2x2,  a  =  (-3/x),  n  =  3

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  3c(2x2)3(-3/x)3c(2x2)2(-3/x)3c(2x2)1(-3/x)3c(2x2)0(-3/x)3

3c0  =  1

3c1  =  3

3c2  =  3

3c3  =  1

  =  (8x6) 3(4x4)(-3/x) 3(2x2)(9/x2) + 1 (1)(-27/x3)

  =  8x6 - 36x3 + 54 - (27/x3)

Question 2 :

Expand (ii)  (2x2 − 31 − x2)+  (2x2 + 31 − x2)4

Solution :

Part 1 :

  =  (2x2 − 31 − x2)4  

x  =  2x2,  a  =  (-31 − x2),  n  =  4

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  4c(2x2)4(-31 −x2)0

4c(2x2)3(-31−x2)4c(2x2)2(-31−x2)2

4c(2x2)1(-31 −x2)34c(2x2)0(-31 −x2)4

4c0  =  1

4c1  =  4

4c2  =  6

4c3  =  4

4c4  =  1

=  16x8

4 (8x6)(-31−x2)+ 6 (4x4) (91−x2)2

4c(2x2)1(-271 −x2)34c(2x2)0(-31 −x2)4

  =  16x8

- 96x1−x2 + 216x1−x- 216x2(1-x21−x

  + 81 (1 −x2) --------(1)

Part 2 :

  =  (2x2 + 31 − x2)4  

x  =  2x2,  a  =  (31 − x2),  n  =  4

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  4c(2x2)4(31 −x2)0

4c(2x2)3(31−x2)4c(2x2)2(31−x2)2

4c(2x2)1(31 −x2)34c(2x2)0(31 −x2)4

  =  16x8

+ 96x1−x2 + 216x1−x+ 216x2(1-x21−x

  + 81 (1 −x2) --------(2)

(1) + (2)  ==>  2 [16x+ 216x1−x+ 81 (1 −x2)2]

Hence the answer is 2 [16x+ 216x1−x+ 81 (1 −x2)2].

Question 3 :

Compute (i)  1024

Solution :

102=  (100 + 2)4

x  =  100, a  =  2, n  =  4

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  4c(100)4(2)+ 4c1(100)3(2)+ 4c2(100)2(2)2 + 4c3(100)1(2)3 + 4c4(100)0(2)4

4c0  =  1

4c1  =  4

4c2  =  6

4c3  =  4

4c4  =  1

  =  1 (100000000)(1) + 4(1000000)(2) + 6(10000)(4) + 4(100)1(8) + 1(1)(16)

  =  100000000 + 8000000 + 240000 + 3200 + 16

  =  108243216

Hence the value of  1024 is 108243216.

Question 4 :

Compute (ii)  994

Solution :

994  =  (100 - 1)4

x  =  100, a  =  -1, n  =  4

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  4c(100)4(-1)+ 4c1(100)3(-1)+ 4c2(100)2(-1)2 + 4c3(100)1(-1)3 + 4c4(100)0(-1)4

4c0  =  1

4c1  =  4

4c2  =  6

4c3  =  4

4c4  =  1

  =  1 (100000000)(1) + 4(1000000)(-1) + 6(10000)(1) + 4(100)1(-1) + 1(1)(1)

  =  100000000 - 4000000 + 60000 - 400 + 1

  =  96059601

Hence the value of  99is 96059601.

Question 5 :

Compute (iii)  97

Solution :

97  =  (10 - 1)7

x  =  10, a  =  -1, n  =  7

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

=  7c(10)7(-1)+ 7c1(10)6(-1)+ 7c2(10)5(-1)2 + 7c3(10)4(-1)3 + 7c4(10)3(-1)4+ 7c5(10)2(-1)5+ 7c6(10)0(-1)6  + 7c7(10)1(-1)7

  =  1(10000000) - 7(1000000) + 21(100000) - 35(10000) + 35(1000) - 21(100) + 7 - 1

  =  10000000-7000000+2100000-350000+35000- 2100+70-1

=  4782969 

Hence the value of  9is 4782969.

Question 6 :

Find the coefficient of x11 in the expansion of

(x3 - 2/x2)12

Solution :

(x3 - 2/x2)12

General term

Tr + 1 = nCr xn-r ar

n = 12, x = x3  a = - 2/x2

= 12Cr (x3)12-r (- 2/x2)r

Coefficient of x11

= 12Cr (x36-3r)(- 2r/x2r)

= -2r (12Cr) (x36-3r)(x2r)

= -2r (12Cr) (x36-3r-2r)

= -2r (12Cr) (x36-5r) --------(1)

36 - 5r = 11

36 - 11 = 5r

25 = 5r

r = 5

To find coefficient of  x11, we apply r = 5

= -2(12C5) (x36-5(5))

= -32 (12 x 11 x 10 x 9 x 8/5 x 4 x 3 x 2 x 1)/ (x11)

= -25344x11

So, the required coefficient of x11 is -25344.

Question 7 :

Determine whether the expansion of 

(x2 - 2/x)18

will contain a term containing x10 ?

Solution :

(x2 - 2/x)18

General term

Tr + 1 = nCr xn-r ar

n = 18, x = x2  a = - 2/x

= 18Cr (x2)18-r (-2/x)r

Coefficient of x10

= 18Cr (x2)18-r (-2r/xr)

= 18Cr (x2)18-r xr(-2r)

= 18Cr (x36 - 2r + r)(-2r)

= 18Cr (x36 - 3r)(-2r)

36 - 3r = 10

3r = 36 - 10

3r = 26

r = 26/3

Since r is the fraction, by dividing it we get decimal. The position cannot be decimal. Then the expansion cannot contain x10.

Question 8 :

The total number of terms in the expansion of (x + a)51– (x – a)51 after simplification is

(a) 102      (b) 25      (c) 26      (d) None of these

Solution :

(x + a)51– (x – a)51

As a expansion of first binomial, we will get 52 terms in total and expanding the second binomial.

Since we have negative after that and getting 52 terms as the expansion of the second binomial. Half of the terms can be eliminated. So, the total number of terms after the simplification is 26.

Question 9 :

The coefficient of xof the expansion (d - x)3 is -9. Find the value of d.

Solution :

(d - x)3 

Here n = 3, x = d and a = -x

Finding coefficient of x2 separately.

Tr + 1 = nCr xn-r ar

Tr + 1 = 3Cr d3-r (-x)r

= 3Cr d3-r (-x)r

coefficient of xterm, we put r = 2

3C2 d3-2 (-x)2

The given coefficient of xterm is -9, then

3d = -9

d = -3

Question 10 :

Find the expansion of (1 + 3x)(1 - 2x)4

Solution :

(1 - 2x)4

Finding the expansion, we get

= nc0xna+ nc1xn-1a+ nc2xn-2a+ ........+ ncnxn-na0

Here n = 4, x = 1 and a = -2x

= 4c0(1)4(-2x)4c1(1)4-1(-2x)+ 4c2(1)4-2(-2x)2 + 4c3(1)4-3(-2x)3 + 4c4(1)4-4(-2x)

= 1 + 4(-2x) + 6(4x2) + 4(-8x3) + 1(16x4)

= 1 - 8x + 24x2 - 32x3 + 16x4

(1 + 3x)(1 - 2x)4

= (1 + 3x) (1 - 8x + 24x2 - 32x3 + 16x4)

1 - 8x + 24x2 - 32x3 + 16x+ 3x - 24x2 + 72x3 - 96x4 + 48x5

= 48x5 + 16x- 96x4 - 32x+ 72x3 + 24x- 24x- 8x + 3x + 1

= 48x5 - 80x4  + 40x3 - 5x + 1

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 8)

    Jan 30, 25 09:48 AM

    AP Calculus AB Problems with Solutions (Part - 8)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 29, 25 06:00 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 105)

    Jan 29, 25 05:52 AM

    digitalsatmath106.png
    Digital SAT Math Problems and Solutions (Part - 105)

    Read More