Binomial expansion for (x + a)n is,
nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + .........+ ncnxn-na0
Question 1 :
Expand (i) [2x2 − (3/x)]3
Solution :
x = 2x2, a = (-3/x), n = 3
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 3c0 (2x2)3(-3/x)0 + 3c1 (2x2)2(-3/x)1 + 3c2 (2x2)1(-3/x)2 + 3c3 (2x2)0(-3/x)3
3c0 = 1 |
3c1 = 3 |
3c2 = 3 |
3c3 = 1 |
= (8x6) + 3(4x4)(-3/x) + 3(2x2)(9/x2) + 1 (1)(-27/x3)
= 8x6 - 36x3 + 54 - (27/x3)
Question 2 :
Expand (ii) (2x2 − 3√1 − x2)4 + (2x2 + 3√1 − x2)4
Solution :
Part 1 :
= (2x2 − 3√1 − x2)4
x = 2x2, a = (-3√1 − x2), n = 4
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 4c0 (2x2)4(-3√1 −x2)0
+ 4c1 (2x2)3(-3√1−x2)1 + 4c2 (2x2)2(-3√1−x2)2
+ 4c3 (2x2)1(-3√1 −x2)3+ 4c4 (2x2)0(-3√1 −x2)4
4c0 = 1 |
4c1 = 4 |
4c2 = 6 |
4c3 = 4 |
4c4 = 1 |
= 16x8
+ 4 (8x6)(-3√1−x2)1 + 6 (4x4) (9√1−x2)2
+ 4c3 (2x2)1(-27√1 −x2)3+ 4c4 (2x2)0(-3√1 −x2)4
= 16x8
- 96x6 √1−x2 + 216x4 √1−x2 - 216x2(1-x2) √1−x2
+ 81 (1 −x2)2 --------(1)
Part 2 :
= (2x2 + 3√1 − x2)4
x = 2x2, a = (3√1 − x2), n = 4
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 4c0 (2x2)4(3√1 −x2)0
+ 4c1 (2x2)3(3√1−x2)1 + 4c2 (2x2)2(3√1−x2)2
+ 4c3 (2x2)1(3√1 −x2)3+ 4c4 (2x2)0(3√1 −x2)4
= 16x8
+ 96x6 √1−x2 + 216x4 √1−x2 + 216x2(1-x2) √1−x2
+ 81 (1 −x2)2 --------(2)
(1) + (2) ==> 2 [16x8 + 216x4 √1−x2 + 81 (1 −x2)2]
Hence the answer is 2 [16x8 + 216x4 √1−x2 + 81 (1 −x2)2].
Question 3 :
Compute (i) 1024
Solution :
1024 = (100 + 2)4
x = 100, a = 2, n = 4
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 4c0 (100)4(2)0 + 4c1(100)3(2)1 + 4c2(100)2(2)2 + 4c3(100)1(2)3 + 4c4(100)0(2)4
4c0 = 1 |
4c1 = 4 |
4c2 = 6 |
4c3 = 4 |
4c4 = 1 |
= 1 (100000000)(1) + 4(1000000)(2) + 6(10000)(4) + 4(100)1(8) + 1(1)(16)
= 100000000 + 8000000 + 240000 + 3200 + 16
= 108243216
Hence the value of 1024 is 108243216.
Question 4 :
Compute (ii) 994
Solution :
994 = (100 - 1)4
x = 100, a = -1, n = 4
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 4c0 (100)4(-1)0 + 4c1(100)3(-1)1 + 4c2(100)2(-1)2 + 4c3(100)1(-1)3 + 4c4(100)0(-1)4
4c0 = 1 |
4c1 = 4 |
4c2 = 6 |
4c3 = 4 |
4c4 = 1 |
= 1 (100000000)(1) + 4(1000000)(-1) + 6(10000)(1) + 4(100)1(-1) + 1(1)(1)
= 100000000 - 4000000 + 60000 - 400 + 1
= 96059601
Hence the value of 994 is 96059601.
Question 5 :
Compute (iii) 97
Solution :
97 = (10 - 1)7
x = 10, a = -1, n = 7
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 7c0 (10)7(-1)0 + 7c1(10)6(-1)1 + 7c2(10)5(-1)2 + 7c3(10)4(-1)3 + 7c4(10)3(-1)4+ 7c5(10)2(-1)5+ 7c6(10)0(-1)6 + 7c7(10)1(-1)7
= 1(10000000) - 7(1000000) + 21(100000) - 35(10000) + 35(1000) - 21(100) + 7 - 1
= 10000000-7000000+2100000-350000+35000- 2100+70-1
= 4782969
Hence the value of 97 is 4782969.
Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM
Dec 21, 24 02:19 AM