Binomial expansion for (x + a)n is,
nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + .........+ ncnxn-na0
Question 1 :
Expand (i) [2x2 − (3/x)]3
Solution :
x = 2x2, a = (-3/x), n = 3
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 3c0 (2x2)3(-3/x)0 + 3c1 (2x2)2(-3/x)1 + 3c2 (2x2)1(-3/x)2 + 3c3 (2x2)0(-3/x)3
3c0 = 1 |
3c1 = 3 |
3c2 = 3 |
3c3 = 1 |
= (8x6) + 3(4x4)(-3/x) + 3(2x2)(9/x2) + 1 (1)(-27/x3)
= 8x6 - 36x3 + 54 - (27/x3)
Question 2 :
Expand (ii) (2x2 − 3√1 − x2)4 + (2x2 + 3√1 − x2)4
Solution :
Part 1 :
= (2x2 − 3√1 − x2)4
x = 2x2, a = (-3√1 − x2), n = 4
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 4c0 (2x2)4(-3√1 −x2)0
+ 4c1 (2x2)3(-3√1−x2)1 + 4c2 (2x2)2(-3√1−x2)2
+ 4c3 (2x2)1(-3√1 −x2)3+ 4c4 (2x2)0(-3√1 −x2)4
4c0 = 1 |
4c1 = 4 |
4c2 = 6 |
4c3 = 4 |
4c4 = 1 |
= 16x8
+ 4 (8x6)(-3√1−x2)1 + 6 (4x4) (9√1−x2)2
+ 4c3 (2x2)1(-27√1 −x2)3+ 4c4 (2x2)0(-3√1 −x2)4
= 16x8
- 96x6 √1−x2 + 216x4 √1−x2 - 216x2(1-x2) √1−x2
+ 81 (1 −x2)2 --------(1)
Part 2 :
= (2x2 + 3√1 − x2)4
x = 2x2, a = (3√1 − x2), n = 4
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 4c0 (2x2)4(3√1 −x2)0
+ 4c1 (2x2)3(3√1−x2)1 + 4c2 (2x2)2(3√1−x2)2
+ 4c3 (2x2)1(3√1 −x2)3+ 4c4 (2x2)0(3√1 −x2)4
= 16x8
+ 96x6 √1−x2 + 216x4 √1−x2 + 216x2(1-x2) √1−x2
+ 81 (1 −x2)2 --------(2)
(1) + (2) ==> 2 [16x8 + 216x4 √1−x2 + 81 (1 −x2)2]
Hence the answer is 2 [16x8 + 216x4 √1−x2 + 81 (1 −x2)2].
Question 3 :
Compute (i) 1024
Solution :
1024 = (100 + 2)4
x = 100, a = 2, n = 4
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 4c0 (100)4(2)0 + 4c1(100)3(2)1 + 4c2(100)2(2)2 + 4c3(100)1(2)3 + 4c4(100)0(2)4
4c0 = 1 |
4c1 = 4 |
4c2 = 6 |
4c3 = 4 |
4c4 = 1 |
= 1 (100000000)(1) + 4(1000000)(2) + 6(10000)(4) + 4(100)1(8) + 1(1)(16)
= 100000000 + 8000000 + 240000 + 3200 + 16
= 108243216
Hence the value of 1024 is 108243216.
Question 4 :
Compute (ii) 994
Solution :
994 = (100 - 1)4
x = 100, a = -1, n = 4
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 4c0 (100)4(-1)0 + 4c1(100)3(-1)1 + 4c2(100)2(-1)2 + 4c3(100)1(-1)3 + 4c4(100)0(-1)4
4c0 = 1 |
4c1 = 4 |
4c2 = 6 |
4c3 = 4 |
4c4 = 1 |
= 1 (100000000)(1) + 4(1000000)(-1) + 6(10000)(1) + 4(100)1(-1) + 1(1)(1)
= 100000000 - 4000000 + 60000 - 400 + 1
= 96059601
Hence the value of 994 is 96059601.
Question 5 :
Compute (iii) 97
Solution :
97 = (10 - 1)7
x = 10, a = -1, n = 7
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
= 7c0 (10)7(-1)0 + 7c1(10)6(-1)1 + 7c2(10)5(-1)2 + 7c3(10)4(-1)3 + 7c4(10)3(-1)4+ 7c5(10)2(-1)5+ 7c6(10)0(-1)6 + 7c7(10)1(-1)7
= 1(10000000) - 7(1000000) + 21(100000) - 35(10000) + 35(1000) - 21(100) + 7 - 1
= 10000000-7000000+2100000-350000+35000- 2100+70-1
= 4782969
Hence the value of 97 is 4782969.
Question 6 :
Find the coefficient of x11 in the expansion of
(x3 - 2/x2)12
Solution :
(x3 - 2/x2)12
General term
Tr + 1 = nCr xn-r ar
n = 12, x = x3 a = - 2/x2
= 12Cr (x3)12-r (- 2/x2)r
Coefficient of x11
= 12Cr (x36-3r)(- 2r/x2r)
= -2r (12Cr) (x36-3r)(x2r)
= -2r (12Cr) (x36-3r-2r)
= -2r (12Cr) (x36-5r) --------(1)
36 - 5r = 11
36 - 11 = 5r
25 = 5r
r = 5
To find coefficient of x11, we apply r = 5
= -25 (12C5) (x36-5(5))
= -32 (12 x 11 x 10 x 9 x 8/5 x 4 x 3 x 2 x 1)/ (x11)
= -25344x11
So, the required coefficient of x11 is -25344.
Question 7 :
Determine whether the expansion of
(x2 - 2/x)18
will contain a term containing x10 ?
Solution :
(x2 - 2/x)18
General term
Tr + 1 = nCr xn-r ar
n = 18, x = x2 a = - 2/x
= 18Cr (x2)18-r (-2/x)r
Coefficient of x10
= 18Cr (x2)18-r (-2r/xr)
= 18Cr (x2)18-r xr(-2r)
= 18Cr (x36 - 2r + r)(-2r)
= 18Cr (x36 - 3r)(-2r)
36 - 3r = 10
3r = 36 - 10
3r = 26
r = 26/3
Since r is the fraction, by dividing it we get decimal. The position cannot be decimal. Then the expansion cannot contain x10.
Question 8 :
The total number of terms in the expansion of (x + a)51– (x – a)51 after simplification is
(a) 102 (b) 25 (c) 26 (d) None of these
Solution :
(x + a)51– (x – a)51
As a expansion of first binomial, we will get 52 terms in total and expanding the second binomial.
Since we have negative after that and getting 52 terms as the expansion of the second binomial. Half of the terms can be eliminated. So, the total number of terms after the simplification is 26.
Question 9 :
The coefficient of x2 of the expansion (d - x)3 is -9. Find the value of d.
Solution :
(d - x)3
Here n = 3, x = d and a = -x
Finding coefficient of x2 separately.
Tr + 1 = nCr xn-r ar
Tr + 1 = 3Cr d3-r (-x)r
= 3Cr d3-r (-x)r
coefficient of x2 term, we put r = 2
3C2 d3-2 (-x)2
The given coefficient of x2 term is -9, then
3d = -9
d = -3
Question 10 :
Find the expansion of (1 + 3x)(1 - 2x)4
Solution :
(1 - 2x)4
Finding the expansion, we get
= nc0xna0 + nc1xn-1a1 + nc2xn-2a2 + ........+ ncnxn-na0
Here n = 4, x = 1 and a = -2x
= 4c0(1)4(-2x)0 + 4c1(1)4-1(-2x)1 + 4c2(1)4-2(-2x)2 + 4c3(1)4-3(-2x)3 + 4c4(1)4-4(-2x)4
= 1 + 4(-2x) + 6(4x2) + 4(-8x3) + 1(16x4)
= 1 - 8x + 24x2 - 32x3 + 16x4
(1 + 3x)(1 - 2x)4
= (1 + 3x) (1 - 8x + 24x2 - 32x3 + 16x4)
= 1 - 8x + 24x2 - 32x3 + 16x4 + 3x - 24x2 + 72x3 - 96x4 + 48x5
= 48x5 + 16x4 - 96x4 - 32x3 + 72x3 + 24x2 - 24x2 - 8x + 3x + 1
= 48x5 - 80x4 + 40x3 - 5x + 1
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 30, 25 09:48 AM
Jan 29, 25 06:00 AM
Jan 29, 25 05:52 AM