Example 1 :
Solution :
Let 3x3 matrix as M1, M2, M3, and M4
|A| = 1M1 + 1M2 + 1M3 + 1M4 -----(1)
Now, we calculating M1, M2, M3, and M4
M1 = 1(1 - 1) + 1(-1 + 1) + 1(1 - 1)
= 1(0) + 1(0) + 1(0)
M1 = 0
M2 = -1(1 - 1) + 1(1 - 1) + 1(-1 + 1)
= -1(0) + 1(0) + 1(0)
M2 = 0
M3 = -1(-1 + 1) - 1(1 - 1) + 1(1 - 1)
= -1(0) - 1(0) + 1(0)
M3 = 0
M4 = -1(1 - 1) - 1(-1 + 1) + 1(1 - 1)
= -1(0) - 1(0) + 1(0)
M4 = 0
By applying M1, M2, M3, and M4 values in equation (1), we get
|A| = 1M1 + 1M2 + 1M3 + 1M4
= 1(0) + 1(0) + 1(0) + 1(0)
|A| = 0
So, the determinant of A is 0
Example 2 :
Solution :
Let 3x3 matrix as M1, M2, M3, and M4
|A| = 1M1 - 0M2 + 2M3 - 0M4 -----(1)
Now, we calculating M1, M2, M3, and M4
M1 = 1(0 - 0) - 2(-3 - 0) + 3(0 - 0)
= 0 + 6 + 0
M1 = 6
M2 = 0(0 - 0) - 2(3 - 2) + 3(0 - 0)
= 0 - 2 + 0
M2 = - 2
M3 = 0(-3 - 0) - 1(3 - 2) + 3(0 + 1)
= 0 - 1 + 3
M3 = 2
M4 = 0(0 - 0) - 1(0 - 0) + 2(0 + 1)
= 0 + 0 + 2
M4 = 2
By applying M1, M2, M3, and M4 values in equation (1), we get
|A| = 1M1 - 0M2 + 2M3 - 0M4
= 1(6) - 0(-2) + 2(2) - 0(2)
= 6 + 4
|A| = 10
So, the determinant of A is 10
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 26, 25 07:59 PM
Jan 26, 25 06:56 AM
Jan 25, 25 01:00 AM