HOW TO FIND THE DETERMINANT OF A 4X4 MATRIX

Example 1 :

Solution :

Let 3x3 matrix as M1, M2, M3, and M4

|A|  =  1M1 + 1M2 + 1M3 + 1M4 -----(1)

Now, we calculating M1, M2, M3, and M4

M1  =  1(1 - 1) + 1(-1 + 1) + 1(1 - 1)

=  1(0) + 1(0) + 1(0)

M=  0

M2  =  -1(1 - 1) + 1(1 - 1) + 1(-1 + 1)

=  -1(0) + 1(0) + 1(0)

M2 =  0

M3  =  -1(-1 + 1) - 1(1 - 1) + 1(1 - 1)

=  -1(0) - 1(0) + 1(0)

M3 =  0

M4  =  -1(1 - 1) - 1(-1 + 1) + 1(1 - 1)

=  -1(0) - 1(0) + 1(0)

M4 =  0

By applying M1, M2, M3, and M4 values in equation (1), we get

|A|  =  1M+ 1M+ 1M3 + 1M

=  1(0) + 1(0) + 1(0) + 1(0)

|A| =  0

So, the determinant of A is 0

Example 2 :

Solution :

Let 3x3 matrix as M1, M2, M3, and M4

|A|  =  1M1 - 0M+ 2M3 - 0M-----(1)

Now, we calculating M1, M2, M3, and M4

M1  =  1(0 - 0) - 2(-3 - 0) + 3(0 - 0)

=  0 + 6 + 0

M=  6

M2  =  0(0 - 0) - 2(3 - 2) + 3(0 - 0)

=  0 - 2 + 0

M2 =  - 2

M3  =  0(-3 - 0) - 1(3 - 2) + 3(0 + 1)

=  0 - 1 + 3

M3 =  2

M4  =  0(0 - 0) - 1(0 - 0) + 2(0 + 1)

=  0 + 0 + 2

M4 =  2

By applying M1, M2, M3, and M4 values in equation (1), we get

|A|  =  1M- 0M+ 2M3 - 0M

=  1(6) - 0(-2) + 2(2) - 0(2)

=  6 + 4

|A| =  10

So, the determinant of A is 10

Apart from the stuff given above if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions

    Dec 26, 24 07:41 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More