HOW TO FIND THE MISSING VERTEX OF A TRIANGLE WHEN CENTROID IS GIVEN

centroid of a triangle is the point where the three medians of the triangle meet. A median of a triangle is a line segment from one vertex to the mid point on the opposite side of the triangle

The centroid G of the triangle with vertices A(x1, y1), B(x2 , y2 ) and C(x3 , y3) is

Let us look at some examples to understand how to find the missing vertex of a triangle when centroid is given

Example 1 :

Find the missing vertex of triangle whose two of the vertices are (0, 0), (-8, 0) and centroid is (-5, -2).

Solution :

Centroid of a triangle = (x+ x+ x3)/3, (y+ y+ y3)/3

Let the required vertex be C (a, b)

A(0, 0) B(-8, 0) and C (a, b)

x =  0, x2  =  -8, x3  =  a

y =  0, y2  =  0, y3  =  b

(0 - 8 + a)/3 , (0 + 0 + b)/3  =  (-5, -2)

(-8 + a)/3 , b/3  =  (-5, -2)

Equating the x and y coordinates, we get

(-8 + a)/3  =  -5

-8 + a  =  -15

a  =  -15 + 8

a  =  -7

b/3  =  -2

b  =  -6

So the required vertex be (-7, -6).

Example 2 :

The centroid of a triangle ABC is (1, 1). Two of the vertices are A (3, -4), B (-4, 7). Find the coordinates of the third vertex.

Solution :

Centroid of a triangle = (x+ x+ x3)/3, (y+ y+ y3)/3

Let the required vertex be C (a, b)

A (3, -4), B (-4, 7) and C (a, b)

x =  3, x2  =  -4, x3  =  a

y =  -4, y2  =  7, y3  =  b

(3 - 4 + a)/3 , (-4 + 7 + b)/3  =  (1, 1)

(-1 + a)/3 , b/3  =  (1, 1)

Equating the x and y coordinates, we get

(-1 + a)/3  =  1

-1 + a  =  3

a  =  3 + 1

a  =  4

b/3  =  1

b  =  3

Hence the required vertex is (4, 3).

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 21, 24 02:20 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 89)

    Dec 20, 24 06:23 AM

    digitalsatmath78.png
    Digital SAT Math Problems and Solutions (Part - 89)

    Read More