HOW TO FIND THE QUADRATIC EQUATION WITH THE SUM AND PRODUCT OF ROOTS

If the sum and product of the roots of a quadratic equation is given, we can construct the quadratic equation as shown below.  

x2 - (sum of roots) x + product of roots = 0

(or)

x2 - (a + ᵦ)x + a ᵦ = 0

Determine the quadratic equations, whose sum and product of roots are given.

Question 1 :

-9 and 20

Solution :

x2 - (sum of roots) x + product of roots = 0

Sum of zeroes  =  -9

Product of zeroes  =  20

x2 - (-9) x + 20 = 0

x2 + 9x + 20 = 0

Hence the required quadratic equation is 

x2 + 9x + 20 = 0

Question 2 :

5/3 and 4

Solution :

x2 - (sum of roots) x + product of roots = 0

Sum of zeroes  =  5/3

Product of zeroes  =  4

x2 - (5/3) x + 4 = 0

(3x2 - 5x + 4)/3 = 0

3x2 - 5x + 4 = 0

Hence the required quadratic equation is 3x2 - 5x + 4 = 0

Question 3 :

-3/2 and -1

Solution :

x2 - (sum of roots) x + product of roots = 0

Sum of zeroes  =  -3/2

Product of zeroes  =  -1

x2 - (-3/2) x + (-1) = 0

x2 + (3/2)x - 1 = 0

2x2 + 3x - 1 = 0

Hence the required quadratic equation is 2x2 + 3x - 1 = 0

Question 4 :

-(2-a)and (a + 5)2

Solution :

x2 - (sum of roots) x + product of roots = 0

Sum of zeroes  =  -(2-a)2

Product of zeroes  =  (a + 5)2

x2 - [-(2 - a)2 x] + (a + 5)2 = 0

x2 + (2 - a)2 x + (a + 5)2 = 0

Hence the required quadratic equation is

x2 + (2 - a)2 x + (a + 5)2 = 0

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More