HOW TO FIND THE QUADRATIC POLYNOMIAL WHOSE ZEROES ARE GIVEN

The general form of any quadratic equation will be

x2 - (α + β) x + α β  =  0

Here α and β are the zeroes of polynomial.

Finding Quadratic Polynomial When Zeroes are Given

Question :

Find the quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i) 1/4 ,-1

Solution :

α = 1/4

β = -1

General form of a quadratic equation

x² – (α + β) x + α β = 0

α + β  =  (1/4) + 1

  =  (1 + 4)/4

  =  5/4

α β  =  (1/4) ( 1)

  =  1/4

 x² – (5/4) x + (1/4) = 0

4 x² – 5 x + 1 = 0

(ii)  √2, 1/3

Solution :

α = √2

 β = 1/3

General form of a quadratic equation

x² – (α + β) x + α β = 0

α + β  =  √2 + (1/3)

  = (3√2 + 1)/3

α β  =  (√2) (1/3)

  =  √2/3

x² – [(3√2 + 1)/3] x + (√2/3) = 0

3 x² – (3√2 + 1) x + √2 = 0

(iii)  0, √5

Solution :

α = 0

 β = √5

General form of a quadratic equation

x² – (α + β) x + α β = 0

α + β  =  0 + √5

   = √5

α β  =  (0) (√5)

  =  0

x²– √5 x + (0) = 0

x² –√5  x = 0

(iv)  1, 1

Solution :

α = 1

 β = 1

General form of a quadratic equation

x² – (α + β) x + α β = 0

α + β  =  1 + 1  =  2

α β = (1) (1)  =  1

x² – 2 x + 1 = 0

(v)  -1/4, 1/4

Solution :

α = -1/4

 β = 1/4

General form of a quadratic equation

x² – (α + β) x + α β = 0

α + β  =  -1/4 + 1/4

=  0

α β  =  (-1/4) (1/4)

  =  -1/16

x² – 0 x + (-1/16) = 0

16 x² – 1 = 0

(vi) 4, 1

Solution :

α = 4

 β = 1

General form of a quadratic equation

x² – (α + β) x + α β = 0

α + β = 4 + 1  = 5

α β = 4 (1) = 4

x² – 5 x + 4 = 0

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 21, 24 02:20 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 89)

    Dec 20, 24 06:23 AM

    digitalsatmath78.png
    Digital SAT Math Problems and Solutions (Part - 89)

    Read More