Integrate the following functions with respect to x :
Example 1 :
cos2x/(sin2x cos2x)
Solution :
= ∫[cos2x/(sin2x cos2x)]dx
= ∫[(cos2x - sin2x)/(sin2x cos2x)]dx
= ∫[cos2x/(sin2x cos2x)]dx - ∫[sin2x/(sin2x cos2x)]dx
= ∫(1/sin2x)dx - ∫(1/cos2x)dx
= ∫cosec2xdx - ∫sec2xdx
= -cotx - tanx + c
Example 2 :
(3 + 4cosx)/sin2x
Solution :
= ∫[(3 + 4 cosx)/sin2x]dx
= 3∫(1/sin2x)dx + 4∫(cos x/sin2x)dx
= 3∫cosec2xdx + 4∫cotxcosecxdx
= 3(-cotx) + 4(-cosecx) + c
= -3cotx - 4cosecx + c
Example 3 :
sin2x/(1 + cosx)
Solution :
= ∫[sin2x/(1 + cosx)]dx
= ∫[(1 - cos2x)/(1 + cosx)]dx
= ∫[(1 + cosx)(1 - cosx)/(1 + cosx)]dx
= ∫(1 - cosx)dx
= x - sinx + c
Example 4 :
sin4x/sinx
Solution :
= ∫[sin4x/sinx]dx
= ∫[sin2(2x)/sinx]dx
= ∫[2sin(2x)cos(2x)/sinx]dx
= ∫[2 ⋅ 2sinxcosx ⋅ cos(2x)/sinx]dx
= ∫[2 ⋅ 2cosx ⋅ cos(2x)]dx
= ∫2[cos(x + 2x) + cos(-x)]dx
= 2∫[cos3x + cosx]dx
= 2[(sin3x)/3 + (sinx)] + c
Example 5 :
cos3xcos2x
Solution :
= ∫[cos3xcos2x]dx
= ∫(2/2)[cos3xcos2x]dx
= (1/2)∫(2cos3xcos2x)dx
= (1/2)∫[(cos(3x + 2x) + cos(3x - 2x)]dx
= (1/2)∫[cos5x + cosx]dx
= (1/2)[(sin5x)/5 + sinx] + c
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 05, 24 11:16 AM
Nov 05, 24 11:15 AM
Nov 02, 24 11:58 PM