The value of the function at a maximum point is called the maximum value of the function and the value of the function at a minimum point is called the minimum value of the function.
Example 1 :
Find the maximum and minimum value of the function
x3 - 3x2 - 9x + 12
Solution :
Let y = f(x) = x³ - 3 x² - 9 x + 12
f'(x) = 3x² - 3 (2x) - 9 (1) + 0
f'(x) = 3x² - 6x - 9
f'(x) = 0
3x² - 6x - 9 = 0
÷ by 3 => x² - 2 x - 3 = 0
x + 1 = 0 x = -1 |
x - 3 = 0 x = 3 |
f'(x) = 3x² - 6x - 9
f''(x) = 3(2x) - 6(1) - 0
f''(x) = 6x - 6
Put x = -1
f '' (-1) = 6(-1) - 6
= -6 - 6
f''(-1) = -12 < 0 Maximum
To find the maximum value let us apply x = -1 in the given function
f (x) = x3 - 3 x2 - 9 x + 12
f (-1) = (-1)³ - 3 (-1)² - 9 (-1) + 12
= -1 - 3(1) + 9 + 12
= -1 - 3 + 9 + 12
= -4 + 21
= 17
Put x = 3
f''(3) = 6(3) - 6
= 18 - 6
f''(3) = 12 > 0 Minimum
To find the minimum value let us apply x = 3 in the given function
f (x) = x3 - 3x2 - 9 x + 12
f (3) = 3³ - 3 (3)² - 9 (3) + 12
= 27 - 3(9) - 27 + 12
= 27 - 27 - 27 + 12
= -27 + 12
= -15
Therefore the maximum value = 17 and
The minimum value = -15
Example 2 :
Find the maximum and minimum value of the function
4x3 - 18x2 + 24 x - 7
Solution :
Let y = f(x) = 4x3 - 18x2 + 24 x - 7
f'(x) = 4(3x2) - 18(2x) + 24(1) - 0
f'(x) = 12x2 - 36x + 24
f'(x) = 0
12x2 - 36 x + 24 = 0
÷ by 12 => x² - 3 x + 2 = 0
x - 1 = 0 x = 1 |
x - 2 = 0 x = 2 |
f'(x) = 12x2 - 36 x + 24
f''(x) = 12 (2x) - 36(1) + 0
f''(x) = 24x - 36
Put x = 1
f''(1) = 24(1) - 36
= 24 - 36
f''(1) = -12 < 0 Maximum
To find the maximum value let us apply x = 1 in the given function.
f (x) = 4x3 - 18x2 + 24 x - 7
f (1) = 4(1)³ - 18(1)² + 24(1) - 7
= 4(1) - 18(1) + 24 - 7
= 4 - 18 + 24 - 7
= 28 - 25
= 3
Put x = 2
f''(2) = 24(2) - 36
= 48 - 36
f''(2) = 12 > 0 Minimum
To find the minimum value let us apply x = 2 in the given function
f(x) = 4x3 - 18x2 + 24x - 7
f(2) = 4(2)3 - 18 (2)² + 24 (2) - 7
= 4(8) - 18(4) + 48 - 7
= 32 - 72 + 48 - 7
= 80 - 79
= 1
Therefore the maximum value is 3 and the minimum value is 1.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 15, 25 07:19 PM
Jan 14, 25 12:34 AM
Jan 14, 25 12:23 AM