Abbreviations used :
L.H.S -----> Left hand side
R.H.S -----> Right hand side
Problem 1 :
Prove :
sec4θ (1 - sin4θ) - 2tan2θ = 1
Solution :
L.H.S :
= sec4θ (1 - sin4θ) - 2tan2θ
= (1/cos4θ) (1 - (sin2θ)2) - 2tan2θ
= [(1 + sin2θ) (1 - sin2θ)/cos4θ] - 2tan2θ
= [(1 + sin2θ) cos2θ/cos4θ] - 2tan2θ
= [(1 + sin2θ)/cos2θ] - 2(sin2θ/cos2θ)
= [(1 + sin2θ - 2sin2θ)/cos2θ]
= [(1 - sin2θ)/cos2θ]
= [cos2θ/cos2θ]
= 1
= R.H.S
Problem 2 :
Prove :
(cotθ - cosθ)/(cotθ + cosθ) = (cosecθ - 1)/(cosecθ + 1)
Solution :
L.H.S :
= (cotθ - cosθ)/(cotθ + cosθ)
= [(cosθ/sinθ) - cosθ] / [(cosθ/sinθ) + cosθ]
= [cosθ (1/sinθ) - 1) / cosθ(1/sinθ) + 1)]
= [(1/sinθ) - 1)/(1/sinθ) + 1)]
= (cosecθ - 1)/(cosecθ + 1)
= R.H.S
Problem 3 :
Prove :
[(sinA - sinB)/(cosA + cosB)] + [(cosA - cosB)/sinA + sin B)]
= 0
Solution :
L.H.S :
= [(sinA - sinB)/(cosA + cosB)]
+ [(cosA - cosB)/sinA + sin B)]
= [(sinA - sinB)(sinA + sinB) + (cosA - cosB)(cosA - cosB)]
/ (cosA + cosB)(sinA + sinB)
= [(sin2A - sin2B) + (cos2A - cos2B)]
/ (cosA + cosB)(sinA + sinB) -----(1)
Numerator :
= (sin2A - sin2B) + (1 - sin2A - (1-sin2B)
= sin2A - sin2B + 1 - sin2A - 1 + sin2B
= 0
Substitute the value of numerator in (1).
(1)-----> = 0/(cos A + cos B)(sin A + sin B)
= 0
= R.H.S
Problem 4 :
Prove :
[(sin3A + cos3A)/(sinA + cosA)] + [(sin3A - cos3A)/(sinA - cosA)]
= 2
Solution :
L.H.S :
Part 1 :
= (sin3A + cos3A)/(sinA + cosA)
= (sinA + cosA)(sin2A + cos2A - sinAcosA)/(sinA + cosA]
= (1 - sinAcosA) ----(1)
Part 2 :
= [(sin3A - cos3A)/(sinA - cosA)]
= (sinA - cosA)(sin2A + cos2A + sinAcosA)/(sinA + cosA)
= (1 + sinAcosA) ----(2)
(1) + (2)
= (1 - sinAcosA) + (1 + sinAcosA)
= 1 + 1
= 2
= R.H.S
Problem 5 :
Prove :
If sinθ + cosθ = √3 , then prove that
tanθ + cotθ = 1
Solution :
sinθ + cosθ = √3
Square both sides.
(sinθ + cosθ)2 = √32
sin2θ + cos2θ + 2sinθcosθ = 3
1 + 2sinθcosθ = 3
2sinθcosθ = 2
sinθcosθ = 1 ----(1)
tanθ + cotθ = (sinθ/cosθ) + (cosθ/sinθ)
= (sin2θ + cos2θ)/sinθ cos θ
Using (1), we get
= 1/1
= 1
Problem 6 :
If √3sinθ - cosθ = 0, then show that
tan3θ = (3tanθ - tan3θ)/(1 - 3tan2θ)
Solution :
√3sinθ − cosθ = 0
√3sinθ = cosθ
sinθ/cosθ = 1/√3
tanθ = 1/√3
θ = 30°
L.H.S :
= tan 3θ
= tan 3(30°)
= tan 90°
= undefined -----(1)
R.H.S :
= (3tanθ - tan3θ)/(1 - 3tan2θ)
= [3(1/√3) - (1/√3)3] / [1 - 3(1/√3)2]
= [(3/√3) - (1/3√3)] / [1 - 3(1/3)]
= [(9 - 1)/3√3)] / (1 - 1)
= [(9 - 1)/3√3)] / 0
= undefined -----(2)
From (1) and (2), we get
L.H.S = R.H.S
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 23, 24 10:01 AM
Nov 23, 24 09:45 AM
Nov 21, 24 06:13 AM