STANDARD DEVIATION FOR CONTINUOUS DATA

Mean Method :

where xi = Middle value of the ith class.

fi = Frequency of the ith class

Step Deviation Method : 

To make the calculation simple, we provide the following formula. Let A be the assumed mean, xi be the middle value of the ith class and c is the width of the class interval.

Example 1 :

The measurements of the diameters (in cms) of the plates prepared in a factory are given below. Find its standard deviation.

Solution :

20.5 - 24.5

15

24.5 - 28.5

18

28.5 - 32.5

20

32.5 - 36.5

16

36.5 - 40.5

8

40.5 - 44.5

7

x is the mid value of the given set.

d = (x - 34.5)/2

x


22.5

26.5

30.5

34.5

38.5

42.5


-6

-4

-2

0

2

4

f


15

18

20

16

8

7

d2


36

16

4

0

4

16

fd2


540

288

80

0

32

112

fd


-90

-72

-40

0

16

28

Σf  =  N  =  84

Σfd =  1052

(Σfd2/N)  =  (1052/84)  =  263/21

Σfd  =  -158

(Σfd/N)2  =  (-158/84)=  (79/42)

σ  =  √(22092-6241)/1764

σ  =  (√15851/1764) ⋅ 2

σ  =  √8.98 ⋅ 2

σ  =  2.99 ⋅ 2

σ  =  5.99

Hence the required standard deviation is 6.

Example 2 :

The time taken by 50 students to complete a 100 meter race are given below. Find its standard deviation

Solution :

x is the mid value of the given set.

d = (x - 22)/2

x


18

20

22

24

26


-2

-1

0

1

2

f


6

8

17

10

9

d2


4

1

0

1

4

fd2


24

8

0

10

36

fd


-12

-8

0

10

18

Σf  =  N  =  50

Σfd =  78

(Σfd2/N)  =  (78/50)  =  39/25

Σfd  =  8

(Σfd/N)2  =  (8/50)=  (4/25)2   =  16/625

σ  =  √(975 - 16)/625

σ  =  √959/625

σ  =  (√1.533) ⋅ 2

σ  =  1.23 ⋅ 2

σ  =  2.47

Hence the required standard deviation is 2.47.

Example 3 :

Calculate the standard deviation and variance of the following data given below.

Class interval

4-8

8-12

12-16

16-20

Frequency

3

6

4

7

Solution :

Since we have less number of data values,  we have may use the direct method to find the standard deviation and variance.

But the data values are as class intervals, we have to find the mid value to fix x.

Class interval

4-8

8-12

12-16

16-20

Mid value

6

10

14

18

Frequency

3

6

4

7

Mean = [6(3) + 10(6) + 14(4) + 18(7)] / (3 + 6 + 4 + 7)

= (18 + 60 + 56 + 126) / 20

= 260/20

= 13

x

6

10

14

18

x - 13

-7

-3

1

5

f

3

6

4

7

(x-X̅)2

49

9

1

25

f(x-X̅)2

147

54

4

175

Σf(x-X̅)2 = 147 + 54 + 4 + 175

= 380

Σf = 20

Calculating standard deviation :

Variance :

σ  19

σ2  = 19

Variance = 19

Example 4 :

Calculate the mean, standard deviation and variance of the following data given below.

Classes

1 - 10

10 - 20

20 - 30

30 - 40

40 - 50

50 - 60

Frequency

11

29

18

4

5

3

Solution :

Finding the mid value. 

Calculating mean :

= [5.5(11) + 15.5(29) + 25.5(18) + 35.5(4) + 45.5(5) + 55.5(3)] / 70

= (60.5 + 449.5 + 459 + 142 + 227.5 + 166.5) / 70

= 1505/70

= 21.5

So, the mean is 21.5

x

5.5

15.5

25.5

35.5

45.5

55.5

d=x-25.5

-20

-10

0

10

20

30

d2

400

100

0

100

400

900

f

11

29

18

4

5

3

fd

-220

-290

0

40

100

90

fd2

4400

2900

0

400

2000

2700

Σfd = -220 + (-290) + 0 + 40 + 100 + 90

= -510 + 230

= -280

Σfd= 4400 + 2900 + 0 + 400 + 2000 + 2700

= 12400

Σf = 11 + 29 + 18 + 4 + 5 + 3

= 70

Approximately the standard deviation is 12.7

Variance = 161.14 approximately 161.

Example 5 :

Life of blubs produced by two factories A and B are given below.

Length of life

(in hours)

550 - 650

650 - 750

750 - 850

850 - 950

950 - 1050

Factory A


10

22

52

20

16

----

120

Factory B


8

60

24

16

12

----

120

The bulb of which factory are more consistent from the point view length of life ?

Solution :

Class length = 100, let us find mid value to fix x.

x

600

700

800

900

1000

d=(x - 800)/100

-2

-1

0

1

2

f(for A)

10

22

52

20

16

f(for B)

8

60

24

16

12

For Bulb A :

Σfd = 10(-2) + 22(-1) + 52(0) + 20(1) + 16(2)

= -20 - 22 + 0 + 20 + 32

= -42 + 52

= 10

Σfd= 10(-2)2 + 22(-1)2 + 52(0)2 + 20(1)2 + 16(2)2

= 40 + 22 + 0 + 20 + 64

= 146

Σf = 120

For Bulb B :

Σfd = 8(-2) + 60(-1) + 24(0) + 16(1) + 12(2)

= -16 - 60 + 0 + 16 + 24

= -76 + 40

= -36

Σfd= 8(-2)2 + 60(-1)2 + 24(0)2 + 16(1)2 + 12(2)2

= 32 + 60 + 0 + 16 + 48

= 156

Σf = 120

Standard deviation for bulb A :

Standard deviation for bulb B :

Factory A is more consistent.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More