Sum of First n Even Natural Numbers

2 + 4 + 6 + ......... to n terms

This is an arithmetic sequence with t1 = 2 and d = 2. 

Formula for sum of first n terms of an arithmetic sequence :

S= (n/2)[2t1 + (n - 1)d]

Substitute a1 = 2 and d = 2.

  = (n/2)[2(2) + (n - 1)2]

= (n/2)[4 + 2n - 2]

= (n/2)[2n + 2]

= (n/2) ⋅ 2(n + 1)

= n(n + 1)

2 + 4 + 6 + ........ to n terms = n(n + 1)

In the sum of first n even natural numbers, if the number of terms is not given and the last term is given, then formula for finding number of terms n :

n = l/2

Example 1 :

Find the sum of

2 + 4 + 6 + ........ to 50 terms

Solution :

Using 2 + 4 + 6 + ........ to n terms = n(n + 1), 

2 + 4 + 6 + ........ + 50 terms = 50(50 + 1) 

= 50(51)

= 2550

Example 2 : 

Find the value of

2 + 4 + 6 + ........ + 90

Solution :

Find the value of n. 

n = l/2

= 90/2

= 45

2 + 4 + 6 + ........ + 90 :

= 2 + 4 + 6 + ........ to 45 terms

Using 2 + 4 + 6 + ........ to n terms = n(n + 1), 

= 45(45 + 1)

= 45(46)

= 2070

Example 3 : 

Find the value of

22 + 24 + 26 + ........ + 100

Solution :

22 + 24 + 26 + ........ + 100 :

= (2 + 4 + 6 + ........ + 100) - (2 + 4 + 6 + ........ + 20)

= (2 + 4 + 6 + .... to 50 terms) - (2 + 4 + 6 + .... to 10 terms)

Using 2 + 4 + 6 + ........ to n terms = n(n + 1), 

= 50(50 + 1) - 10(10 + 1)

= 50(51) - 10(11)

= 2550 - 110

= 2440

Example 4 : 

Using the sum of first n even natural numbers, find the sum of

6 + 12 + 18 + ........ to 50 terms

Solution :

6 + 12 + 18 + ........ to 50 terms :

= 3(2 + 4 + 6 + ........ to 50 terms)

Using 2 + 4 + 6 + ........ to n terms = n(n + 1), 

= 3[50(50 + 1)]

= 3[50(51)]

= 7650

Example 5 : 

Using the sum of first n even natural numbers, find the value of

6 + 12 + 18 + ........ + 360

Solution :

6 + 12 + 18 + ........ + 360 : 

= 3(2 + 4 + 6 + ........ + 120)

= 3(2 + 4 + 6 + ........ to 60 terms)

Using 2 + 4 + 6 + ........ to n terms = n(n + 1), 

= 3[60(60 + 1)]

= 3[60(61)]

= 10980

Example 6 : 

If 2 + 4 + 6 + ........ + k = 72, then find k. 

Solution :

Find the value of n. 

n = l/2

= k/2

2 + 4 + 6 + ........ to k/2 terms  = 72

Using 2 + 4 + 6 + ........ to n terms = n(n + 1),

(k/2)(k/2 + 1) = 72

(k/2)[(k + 2)/2] = 72

k(k + 2)/4 = 72

Multiply each side by 4.

k(k + 2) = 288

k2 + 2k = 288

k2 + 2k - 288 = 0

Factor and solve.

k2 + 18k -16k - 288 = 0

k(k + 18) - 16(k + 18) = 0

(k + 18)(k - 16) = 0

k + 18 = 0

k = -18

k - 16 = 0

k = 16

But k ≠ -18, because k is an even natural number. 

Hence k = 16.

Example 7 :

If 2 + 4 + 6 + ........ to k terms = 240, then find k. 

Solution :

2 + 4 + 6 + ........ to k terms = 240

Using 2 + 4 + 6 + ........ to n terms = n(n + 1),

k(k + 1) = 240

k2 + k = 240

k2 + k - 240 = 0

Factor and solve. 

k2 + 16k - 15k - 240 = 0

k(k + 16) - 15(k + 16) = 0

(k + 16)(k - 15) = 0

k + 16 = 0

k = -16

k - 15 = 0

k = 15

But k ≠ -16, because number of terms can not be negative value. 

Hence k = 15.

Example 8 :

Find the average of first 25 even natural numbers. 

Solution :

Using 2 + 4 + 6 + ........ to n terms = n(n + 1) to find the sum of first 25 odd natural numbers. 

2 + 4 + 6 + ........ to 25 terms = 25(25 + 1)

= 25(26)

= 650

Average of first 25 even natural numbers : 

= (Sum of first 25 even natural numbers)/25

= 650/25

= 26

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions

    Dec 26, 24 07:41 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More