THIRD ANGLE THEOREM

If two angles of one triangle are congruent to two angles of another triangle, then the third pair of angles must also be congruent.  

In the diagram given below, if ∠A ≅ ∠D and∠B ≅ ∠E, then ∠C ≅ ∠F.

Example 1 : 

In the diagram given below, ∠L ≅ ∠P and ∠M ≅ ∠Q, find m∠N and m∠R. Check whether ∠N ≅ ∠R and justify your answer.   

Solution : 

Given : ∠L ≅ ∠P and ∠M ≅ ∠Q

From the figure above,

we have m∠L  =  105°

Because ∠L  ≅  ∠P, 

we have m∠P  =  105°

From the figure above,

we have m∠Q  =  45°

Because ∠Q  ≅  ∠M, 

we have m∠M  =  45°

ΔLMN : 

By the Triangle Sum theorem, we have

m∠L + m∠M + m∠N  =  180°

Substitute 105° for m∠L and 45° for m∠M.

105° + 45° + m∠N  =  180°

Simplify. 

150° + m∠N  =  180°

Subtract 150° from both sides. 

m∠N  =  30°

ΔPQR : 

By the Triangle Sum theorem, we have 

m∠P + m∠Q + m∠R  =  180°

Substitute 105° for m∠P and 45° for m∠Q.

105° + 45° + m∠R  =  180°

Simplify. 

150° + m∠R  =  180°

Subtract 150° from both sides.

m∠R  =  30°

Because m∠N = 30° and m∠R = 30°, we have

m∠N = m∠R -----> ∠N ≅ ∠R

Justification : 

By the Third Angles Theorem, if two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

So, ∠N ≅ ∠R

Example 2 : 

In the diagram given below, ∠B ≅ ∠U and ∠C ≅ ∠V, find m∠A and using the Third Angles Theorem to find m∠T.

Solution : 

Given : ∠B ≅ ∠U and ∠C ≅ ∠V. 

From the figure, we have m∠U = 59°.

Because ∠B ≅ ∠U, we have m∠B = 59°.

In ΔABC, by the Triangle Sum theorem, we have 

m∠A + m∠B + m∠C  =  180°

Substitute 59° for m∠B and 55° for m∠C.  

m∠A + 59° + 55°  =  180°

Simplify. 

m∠A + 114°  =  180°

Subtract 114° from both sides. 

m∠A  =  66°

By the Third Angles Theorem, if two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

So, we have 

∠T ≅ ∠A

m∠T = ∠A

m∠T =  66°

Example 3 : 

Find the value of x in the diagram given below. 

Solution : 

In the diagram above, ∠N ≅ ∠R and ∠L ≅ ∠S. From the Third angles theorem, we know that ∠M ≅ ∠T. So, m∠M m∠T.

From the triangle sum theorem, we have 

m∠L + m∠M + m∠N  =  180°

65° + 55° + m∠M  =  180°

Simplify

120° + m∠M  =  180°

Subtract 120° from both sides. 

m∠M  =  60° 

By the theorem, if two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

So, we have

∠M ≅ ∠T ----> m∠M = m∠T

Substitute 60° for m∠M and (2x + 30)° for m∠M.

60°  =  (2x + 30)°

60  =  2x + 30

Subtract 30 from both sides.

30  =  2x

Divide both sides by 2. 

15  =  x

Example 4 : 

Decide whether the triangles are congruent. Justify your reasoning. 

Solution :

From the diagram, we are given that all three pairs of corresponding sides are congruent. 

RP ≅ MN, PQ ≅ NQ and Q≅ QM

Because ∠P and ∠N have the same measure, ∠P ≅ ∠N.

By the Vertical Angles Theorem, we know that 

∠PQR ≅ MQN

In ΔPQR and ΔMQN, ∠P ≅ ∠N and ∠PQR ≅ MQN.  

By the theorem, if two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

So, we have

R ≅ M

So, all three pairs of corresponding sides and all three pairs of corresponding angles are congruent.

By the definition of congruent angles, 

ΔPQR ≅ ΔNQM

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Solving Trigonometric Equations Problems and Solutions

    Dec 18, 24 10:53 AM

    Solving Trigonometric Equations Problems and Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 17, 24 10:13 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 88)

    Dec 17, 24 10:07 AM

    digitalsatmath75.png
    Digital SAT Math Problems and Solutions (Part - 88)

    Read More