Let A = {(x, y) a < x < b, c < y < d} ∈ ℝ2, F : A-> ℝ, we say that F is a homogeneous function on A, if there exists a constant P such that F(λx, λy) = λp f(x, y) for all λ∈ℝ such that (λx, λy)∈A. This constant is called degree of F.
Step 1 :
In the given function, apply x = λx and y = λy.
Step 2 :
Do the possible simplification.
Step 3 :
Get the function in the form of λp f(x).
P is the degree of the polynomial.
Then,
x(∂F/∂x) (x, y) + y(∂F/∂y) (x, y) = pF(x, y)
Problem 1 :
Prove that
f (x, y) = x3 − 2x2y +3xy2 + y3
is homogeneous; what is the degree? Verify Euler’s Theorem for f .
Solution :
f (x, y) = x3 − 2x2y +3xy2 + y3
Apply x = λx and y = λy
f (λx, λy) = (λx)3 − 2(λx)2(λy) +3(λx)(λy)2 + (λy)3
f (λx, λy) = λ3x3 − 2λ3(x2y) +3λ3xy2 + λ3y3
f (λx, λy) = λ3(x3 − 2x2y +3xy2 + y3)
So it is not a homogeneous function of degree 3.
Given : x3 − 2x2y +3xy2 + y3
∂F/∂x = 3x2-2(2x)y+3(1)y2+0
∂F/∂x = 3x2-4xy+3y2
x(∂F/∂x) = x(3x2-4xy+3y2) ---(1)
Given : x3 − 2x2y +3xy2 + y3
∂F/∂y = 0-2x2(1)+3x(2y)+3y2
∂F/∂y = -2x2+6xy+3y2
y(∂F/∂y) = y(-2x2+6xy+3y2) ---(2)
(1) + (2)
x(∂F/∂x) + y(∂F/∂y) = x(3x2-4xy+3y2)+y(-2x2+6xy+3y2)
= 3x3-4x2y+3xy2-2x2y+6xy2+3y3
= 3x3-6x2y+9xy2+3y3
= 3(x3-2x2y+3xy2+y3)
= P F(x, y)
Hence it is proved.
Problem 2 :
Prove that
g(x, y) = x log (y/x)
is homogenous, what is the degree ? Verify Euler's theorem for g.
Solution :
g(x, y) = x log (y/x)
Applying x = λx and y = λy
g(λx, λy) = λx log (λy/λx)
g(λx, λy) = λx log (y/x)
It is a homogenous function of degree 1.
∂F/∂x = x (x/y)(-yx-2) + log(y/x)(1)
∂F/∂x = x (x/y)(-y/x2) + log(y/x)
∂F/∂x = -1 + log (y/x) -----(1)
∂F/∂y = x (x/y)(1/x)
∂F/∂y = (x/y) -----(2)
(1) + (2)
x(∂F/∂x) + y(∂F/∂y) = x[-1 + log (y/x)] + y(x/y)
x(∂F/∂x) + y(∂F/∂y) = -x + xlog (y/x) + x
x(∂F/∂x) + y(∂F/∂y) = x log (y/x)
Hence it is proved.
Problem 3 :
If u(x, y) = (x2+y2)/√(x+y)
prove that x(∂u/∂x) + y(∂u/∂y) = (3/2)u
Solution :
u(x, y) = (x2+y2)/√(x+y)
Applying x = λx and y = λy
u(λx, λy) = ((λx)2+(λy)2)/√((λx)+(λy))
u(λx, λy) = ((λ2x2+λ2y)2)/√λ(x+y)
u(λx, λy) = λ2(x2+y)2/√λ(x+y)
u(λx, λy) = λ2-1/2(x2+y)2/√(x+y)
u(λx, λy) = λ3/2(x2+y)2/√(x+y)
It is a homogenous function of degree 3/2.
x(∂u/∂x) + y(∂u/∂y) = (3/2)u
Problem 4 :
If
v(x, y) = log [(x2+y2)/(x+y)]
prove that x(∂v/∂x) + y(∂v/∂y) = 1
Solution :
F = v = log [(x2+y2)/(x+y)]
F = ev = [(x2+y2)/(x+y)]
Applying x = λx and y = λy
v(λx, λy) = [(λx)2+(λy)2]/((λx)+(λy))
v(λx, λy) = [λ2(x2+y2)/λ(x+y)]
v(λx, λy) = λ[(x2+y2)/(x+y)]
It is a homogenous function of degree 1.
F = ev
∂F/∂x = ∂(ev)/∂x ∂F/∂x = ev(∂v/∂x) --(1) |
∂F/∂x = ∂(ev)/∂y ∂F/∂x = ev(∂v/∂y)--(2) |
(1)+(2)
x(∂F/∂x) + y(∂F/∂y) = nF
xev(∂v/∂x) + yev(∂v/∂y) = (1)ev
ev[x(∂v/∂x) + y(∂v/∂y)] = ev
[x(∂v/∂x) + y(∂v/∂y)] = 1
Hence it is proved.
Problem 4 :
If
w(x, y, z) = log[(5x3y4+7y2xz4-75y3z4)/(x2+y2)]
find x(∂w/∂x) + y(∂w/∂y) + z(∂w/∂z).
Solution :
F = w(x, y, z) = log[(5x3y4+7y2xz4-75y3z4)/(x2+y2)]
F = w = log[(5x3y4+7y2xz4-75y3z4)/(x2+y2)]
Let F = ew
w(λx, λy, λz) = [λ7(5x3y4+7y2xz4-75y3z4)/λ2(x2+y2)]
= λ5(5x3y4+7y2xz4-75y3z4)/(x2+y2)
It is a homogenous function of degree 5.
x(∂F/∂x) = x(∂(ew)/∂x) ==> xew(∂F/∂x) ----(1)
y(∂F/∂y) = y(∂(ew)/∂y) ==> yew(∂F/∂y) ----(2)
z(∂F/∂z) = z(∂(ew)/∂z) ==> zew(∂F/∂z) ----(3)
(1)+(2)+(3)
xew(∂F/∂x) + yew(∂F/∂y) + zew(∂F/∂z) = 5ew
x(∂F/∂x) + y(∂F/∂y) + z(∂F/∂z) = 5
Hence the answer is 5.
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 05, 24 11:16 AM
Nov 05, 24 11:15 AM
Nov 02, 24 11:58 PM