VERIFY EULERS THEOREM FOR THE HOMOGENOUS FUNCTION

Let A = {(x, y) a < x < b, c < y < d} ∈ 2, F : A-> ℝ, we say that F is a homogeneous function on A, if there exists a constant P such that F(λx, λy) = λp f(x, y) for all λℝ such that (λx, λy)∈A. This constant is called degree of F. 

Step 1 :

In the given function, apply x = λx and y = λy.

Step 2 :

Do the possible simplification.

Step 3 :

Get the function in the form of λp f(x).

P is the degree of the polynomial.

Then, 

x(∂F/∂x) (x, y) + y(∂F/∂y) (x, y) = pF(x, y)

Problem 1 :

Prove that

f (x, y) = x3 − 2x2y +3xy2 + y3

is homogeneous; what is the degree? Verify Euler’s Theorem for f .

Solution :

f (x, y) = x3 − 2x2y +3xy2 + y3

Apply x = λx and y = λy

f (λx, λy) = (λx)3 − 2(λx)2(λy) +3(λx)(λy)2 + (λy)3

f (λx, λy) = λ3x3 − 2λ3(x2y) +3λ3xy2 + λ3y3

f (λx, λy) = λ3(x3 − 2x2y +3xy2 + y3)

So it is not a homogeneous function of degree 3.

Given : x3 − 2x2y +3xy2 + y3

∂F/∂x = 3x2-2(2x)y+3(1)y2+0

∂F/∂x = 3x2-4xy+3y2

x(∂F/∂x) = x(3x2-4xy+3y2) ---(1)

Given : x3 − 2x2y +3xy2 + y3

∂F/∂y = 0-2x2(1)+3x(2y)+3y2

∂F/∂y = -2x2+6xy+3y2

y(∂F/∂y) = y(-2x2+6xy+3y2) ---(2)

(1) + (2)

x(∂F/∂x) + y(∂F/∂y) = x(3x2-4xy+3y2)+y(-2x2+6xy+3y2)

= 3x3-4x2y+3xy2-2x2y+6xy2+3y3

= 3x3-6x2y+9xy2+3y3

= 3(x3-2x2y+3xy2+y3)

= P F(x, y)

Hence it is proved.

Problem 2 :

Prove that

g(x, y) = x log (y/x)

is homogenous, what is the degree ? Verify Euler's  theorem for g.

Solution :

g(x, y) = x log (y/x)

Applying x = λx and y = λy

g(λxλy) = λx log (λy/λx)

g(λxλy) = λx log (y/x)

It is a homogenous function of degree 1.

∂F/∂x = x (x/y)(-yx-2) + log(y/x)(1)

∂F/∂x = x (x/y)(-y/x2) + log(y/x)

∂F/∂x = -1 + log (y/x)  -----(1)

∂F/∂y = x (x/y)(1/x)

∂F/∂y = (x/y) -----(2)

(1) + (2)

x(∂F/∂x) + y(∂F/∂y) = x[-1 + log (y/x)] + y(x/y)

x(∂F/∂x) + y(∂F/∂y) = -x + xlog (y/x) + x

x(∂F/∂x) + y(∂F/∂y) = x log (y/x)

Hence it is proved.

Problem 3 :

If u(x, y) = (x2+y2)/√(x+y)

prove that x(∂u/∂x) + y(∂u/∂y) =  (3/2)u

Solution :

u(x, y) = (x2+y2)/√(x+y)

Applying x = λx and y = λy

u(λxλy) = ((λx)2+(λy)2)/√((λx)+(λy))

u(λxλy) = ((λ2x2+λ2y)2)/λ(x+y)

u(λxλy) = λ2(x2+y)2/√λ(x+y)

u(λxλy) = λ2-1/2(x2+y)2/(x+y)

u(λxλy) = λ3/2(x2+y)2/√(x+y)

It is a homogenous function of degree 3/2.

x(∂u/∂x) + y(∂u/∂y) =  (3/2)u

Problem 4 :

If

v(x, y) = log [(x2+y2)/(x+y)]

prove that x(∂v/∂x) + y(∂v/∂y) =  1

Solution :

F = v = log [(x2+y2)/(x+y)]

F = ev[(x2+y2)/(x+y)]

Applying x = λx and y = λy

v(λxλy) = [(λx)2+(λy)2]/((λx)+(λy))

v(λxλy) = [λ2(x2+y2)/λ(x+y)]

v(λxλy) = λ[(x2+y2)/(x+y)]

It is a homogenous function of degree 1.

F = ev

∂F/∂x = ∂(ev)/∂x

∂F/∂x = ev(∂v/∂x) --(1)

∂F/∂x = ∂(ev)/∂y

∂F/∂x = ev(∂v/∂y)--(2)

(1)+(2)

x(∂F/∂x) + y(∂F/∂y) = nF

xev(∂v/∂x) + yev(∂v/∂y) = (1)ev

ev[x(∂v/∂x) + y(∂v/∂y)] = ev

[x(∂v/∂x) + y(∂v/∂y)] = 1

Hence it is proved.

Problem 4 :

If

w(x, y, z) = log[(5x3y4+7y2xz4-75y3z4)/(x2+y2)]

find x(∂w/∂x) + y(∂w/∂y) + z(∂w/∂z).

Solution :

F = w(x, y, z) = log[(5x3y4+7y2xz4-75y3z4)/(x2+y2)]

F = w = log[(5x3y4+7y2xz4-75y3z4)/(x2+y2)]

Let F = ew

 w(λx, λy, λz) = [λ7(5x3y4+7y2xz4-75y3z4)/λ2(x2+y2)]

= λ5(5x3y4+7y2xz4-75y3z4)/(x2+y2)

It is a homogenous function of degree 5.

x(∂F/∂x) = x(∂(ew)/∂x)  ==> xew(∂F/∂x) ----(1)

y(∂F/∂y) = y(∂(ew)/∂y)  ==> yew(∂F/∂y) ----(2)

z(∂F/∂z) = z(∂(ew)/∂z)  ==> zew(∂F/∂z) ----(3)

(1)+(2)+(3)

xew(∂F/∂x) + yew(∂F/∂y) + zew(∂F/∂z) = 5ew

x(∂F/∂x) + y(∂F/∂y) + z(∂F/∂z) = 5

Hence the answer is 5.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jul 27, 24 04:58 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Problems on Angles (Part - 3)

    Jul 27, 24 04:44 AM

    problemsonangles11.png
    Problems on Angles (Part - 3)

    Read More

  3. Derivative Problems and Solutions (Part - 5)

    Jul 27, 24 04:15 AM

    Derivative Problems and Solutions (Part - 5)

    Read More