WRITE THE GIVEN PRODUCT EXPRESSION AS WHOLE NUMBER

Exponents are used to avoid the repetition of writing the same numerical values many times.

Example 1  :

2 × 3 × 5

Solution :

=  2 × 3 × 5

By converting it as whole number, we get

=  6 × 5

=  30

So, the whole number is 30.

Example 2 :

22 × 5

Solution :

=  22 × 5

22 written as 2 × 2

By converting it as whole number, we get

=  2 × 2 × 5

=  20

So, the whole number is 20.

Example 3 :

23 × 7

Solution :

=  23 × 7

23 written as 2 × 2 × 2

By converting it as whole number, we get

=  2 × 2 × 2 × 7

=  56

So, the whole number is 56.

Example 4 :

2 × 33 × 5

Solution :

Given,

2 × 33 × 5

33 written as 3 × 3 × 3

By converting it as whole number, we get

=  2 × 3 × 3 × 3 × 5

=  270

So, the whole number is 270.

Example 5 :

22 × 32 × 11

Solution :

=  22 × 32 × 11

22 and 32 written as 2 × 2 and 3 × 3

By converting it as whole number, we get

=  2 × 2 × 3 × 3 × 11

=  396

So, the whole number is 396.


Example 6 :

23 × 52 × 112

Solution :

=  23 × 32 × 112

23  =  2 × 2 × 2

32  =  3 × 3

112  =  11 × 11

By converting it as whole number, we get

=  2 × 2 × 2 × 3 × 3 × 11 × 11

=  8712

So, the whole number is 8712.

Example 6 :

10 + 20 + 30 is equal to 

a) 0     b)  1     c) 3    d) 6

Solution :

10 + 20 + 30

Anything to the power is 1.

= 1 + 1 + 1

= 3

Example 7 :

The value of (1022 + 1020) / 1020 is equal to 

a) 10     b)  1042     c) 101    d) 1022

Solution :

= (1022 + 1020) / 1020 

= 1020(102 + 1)/1020

Cancelling the common factors in both numerator and denominator, we get

= (102 + 1)

= 100 + 1

= 101

Example 8 :

If

21998 – 21997 – 21996 + 21995 = K.21995

 then the value of K is

(a) 1    (b) 2    (c) 3    (d)  4

Solution :

21998 – 21997 – 21996 + 21995 = K.21995

Factoring 21995, we get

21995(2- 22 - 2 + 1) = K.21995

Cancelling 21995, we get

(2- 22 - 2 + 1) = K

8 - 4 - 2 + 1 = k

8 - 6 = k

k = 2

Example 9 :

Which of the following is equal to 1?

(a) 20 + 30 + 40          (b) 20 × 3× 40

(c) (3020) × 40      (d)  (3020) × (30 + 20)

Solution :

Let us evaluate the options one by one.

Option a :

= 20 + 30 + 40

Anything to the power 0 is 1.

= 1 + 1 + 1

= 3

Option b :

20 × 3× 40

= 1 x 1 x 1

= 1

So, option b is correct.

State the following statements are true or false.

Example 10 :

49 is greater than 163

Solution :

To compare these two, we have to make the power or base as same. After that the comparison can be done simply.

49 = (2 x 2)9

= (22)9

= 218 ------(1)

163 = (2 x 2 x 2 x 2)3

= (24)3

= 212 ------(2)

After comparing (1) and (2), we get

218 > 212

So, the given is true.

Example 11 :

8 × 106 + 2 × 104 + 5 × 102 + 9 × 100 = 8020509

Solution :

8 × 106 + 2 × 104 + 5 × 102 + 9 × 100

= 8 x 1000000 + 2 x 10000 + 5 x 100 + 9 x 1

= 8000000 + 20000 + 500 + 9

= 8020509

So, the given expression is true.

Example 12 :

Arrange is ascending order

22+3, (22)323x 2, 35/32, 32x 30, 23x 52

Solution :

22+3, (22)323x 2, 35/32, 32x 30, 23x 52

  • 22+3 25 ==> 32
  • (22)3 = 26 ==> 64
  • 23x 2 = 8 x 2 ==> 16
  • 35/3= 33 ==> 27
  • 32x 3= 9 x 1 ==> 9
  • 23x 52 = 8 x 25 ==>  200

Arranging from least to greatest,

9, 16, 27, 32, 64, 200

32x 3023x 2, 35/32, 22+3, (22)323x 52

Example 13 :

Arrange is descending order

25, 3323x 2, (33)2, 35, 40, 23x 8

Solution :

25, 33, 23x 2, (33)2, 35, 40, 23x 8

  • 2==> 64
  • 3==> 27
  • 23x 2 = 8 x 2 ==> 16
  • (33)= 34 ==> 81
  • 3==> 243
  • 40 ==> 1
  •  23x 8 = 8 x 8 ==> 64

Arranging from greatest to least.

243, 81, 64, 27, 16, 1

35 (33)2 23x 8, 33, 23x 2, 40

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More