WRITING POLYNOMIALS IN STANDARD FORM

The terms of a polynomial may be written in any order. However, polynomials that contain only one variable are usually written in standard form.

The standard form of a polynomial that contains one variable is written with the terms in order from greatest degree to least degree. When written in standard form, the coefficient of the first term is called the leading coefficient.

Examples :

(i) 8x4 + 4x3 - 7x2 - 9x + 6

(ii)  -y+ 4y 6y2 - 3y + 5  

Question 1 :

Rewrite each the following polynomials in standard form.

(i)  x - 9 + 7x3 + 6x2

Solution :

Standard form of the given polynomial is  

7x3 + 6x2 + x - 9

(ii)   √2x2 - (7/2)x4 + x - 5x3

Solution :

Standard form of the given polynomial is  

- (7/2)x4 - 5x3 √2x2 + x

(iii)   7x3 - (6/5)x2 + 4x - 1

Solution :

The given polynomial is already in standard form.

(iv)   y2 - √5y3 - 11 - (7/3)y + 9y4

Solution :

Standard form of the given polynomial is

=  9y4- √5y3 y2 - (7/3)y - 11

Question 2 :

Add the following polynomials and write the resultant polynomials in standard form. 

(i)  p(x)  =  6x2 - 7x + 2 and q(x)  =  6x3 - 7x + 15

Solution :

p(x) + q(x)  =  (6x2 - 7x + 2) + (6x3 - 7x + 15) 

=  6x2 - 7x + 2 + 6x3 - 7x + 15

=  6x+ 6x2 - 7x - 7x + 2 + 15

=  6x+ 6x2 - 14x + 17

(ii)  h(x)  =  7x3 - 6x + 1, f(x)  =  7x2 + 17x - 9

Solution :

h(x) + f(x)  =  (7x3 - 6x + 1) + (7x2 + 17x - 9)

=  7x3 + 7x2- 6x + 17x + 1 - 9

=  7x3 + 7x+ 11x - 8

(iii)  f(x)  =  16x4 - 5x2 + 9, g(x)  =  -6x3 + 7x - 15

Solution :

f(x) + g(x)  =  (16x4 - 5x2 + 9) + (-6x3 + 7x - 15)

=  16x4- 6x3  - 5x+ 7x + 9 - 15

=  16x4- 6x3  - 5x+ 7x  - 6

Question 3 :

If m = 4n + 5 and p = 3n + 6, which of the following expresses n in terms of m and p?

(A) m + 2p - 3     (B) m - p + 1      (C) 3m - 2p + 4

(D) 4m + p + 1       (E) 2m - 5p

Solution :

m = 4n + 5 and p = 3n + 6

Writing 3n as 4n - 1n and 6 as 5 + 1, 

p = 4n - n + 5 + 1

p = (4n + 5) - n + 1

p = m - n + 1

So, option B is correct.

Question 4 :

Which expression is equivalent to

(x2 + 11)2 + (x + 5)(x - 5) ?

A)  x4 + 23x2 - 14          B)  x4 + 23x2 + 96

C)  x4 + 12x2 + 121          D)  x4 + x2 + 146

Solution :

= (x2 + 11)2 + (x + 5)(x - 5)

= x4 + 2x2 (11) + 112 + x2 - 52

= x4 + 22x2 + 121 + x2 - 25

= x4 + 23x2 + 96

So, option B is correct.

Question 5 :

x2 y - 3y2 + 5xy2 - (-x2 y + 3xy2 - 3y2)

Solution :

= x2 y - 3y2 + 5xy2 - (-x2 y + 3xy2 - 3y2)

x2 y - 3y2 + 5xy2 + x2 y - 3xy2 + 3y2

x2 y + x2 y - 3y2 + 3y+ 5xy2 - 3xy2

= 2x2 y + 2xy2

Question 6 :

If x + y = 10, what is the sum of (x + y)2  and (x + y) ?

A)  90     B) 100    C)  110     D)  200      E)  210

Solution :

Given that, x + y = 10

= (x + y)2 + (x + y)

= 102 + 10

= 100 + 10

= 110

So, the answer is option C.

Question 7 :

(x + 5) + (2x - 3)

Which of the following in equivalent to the given expression.

A)  3x - 2     B)  3x + 2      C)  3x - 8     D)  3x + 8

Solution :

= (x + 5) + (2x - 3)

= x + 5 + 2x - 3

= x + 2x + 5 - 3

= 3x + 2

So, option B is correct.

Question 8 :

What is the distance around the rectangle if the length is 3x2 + 6x – 10 and the width is 3x + 5?

writing-polynomials-in-standard-form-q1

Solution :

Length of the rectangle = 3x2 + 6x – 10

Width of the rectangle = 3 x + 5

Perimeter of the rectangle = 2(length + width)

= 2 (3x2 + 6x – 10 + 3x + 5)

= 2 (3x2 + 6x + 3x – 10 + 5)

= 2 (3x2 + 9x – 5)

Distributing 2, we get

= 6x2 + 18x – 10

So, the required perimeter of the rectangle is 

6x2 + 18x – 10

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 62)

    Nov 05, 24 11:16 AM

    Digital SAT Math Problems and Solutions (Part - 62)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 05, 24 11:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Worksheet on Proving Trigonometric Identities

    Nov 02, 24 11:58 PM

    tutoring.png
    Worksheet on Proving Trigonometric Identities

    Read More